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Abstract

Spending Threshold Discounts (STDs)—offering discounts or free delivery for orders with
total spending above a set amount—are widely used by restaurants on delivery platforms to
boost sales. However, they risk increasing food waste if customers add items solely to qual-
ify. We analyze this tension with an economic model wherein a monopolistic online restaurant
sells to two groups of rational customers (budget-conscious college students and affluent pro-
fessionals, both with varying inherent demand) when there is a single threshold. Surprisingly,
we find that profit improvement through the STD and waste reduction may not conflict, be-
cause the STD affects the restaurant profit through three channels: 1) Order size expansion:
Buyers (i.e., customers that make purchases) whose basket values with inherent demand are
just below the threshold add items, but their added values are often less than the discount
value, causing profit loss and unnecessary consumption or waste; 2) Buyer base expansion:
Customers deterred by delivery fees may buy if a low threshold enables the discount with
minimal added values; 3) Profit margin enhancement: The threshold creates a sudden drop in
effective average price, enabling restaurants to raise marginal food prices. Therefore, under cer-
tain conditions, heightened customer aversion to waste can boost profits by curbing inefficient
order size expansions without affecting the other two channels. Besides, regulators can achieve
a rare triple win—reducing waste, increasing welfare, and maintaining restaurant profits—by
capping platform fees. Overall, smarter pricing, consumer awareness, and balanced regulation
can harmonize profitability with sustainability in delivery markets.
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1 Introduction

Spending-Threshold-Discount (STD) pricing is a widely adopted pricing mechanism, in which
firms offer a fixed reduction once a customer’s spending exceeds a predetermined threshold. Ex-
amples include “$20 off orders over $100,” free delivery for orders above $100, or tiered pricing
such as one scoop of ice cream for $7, two scoops for $8, and three scoops for $12 (equivalently, if
X is the number of scoops purchased and Y = 1 when spending≥ $9, total payment = 3 + 4X – 3Y).
Typically, an STD scheme starts with a fixed fee (e.g., a delivery charge), adds a linear per-unit
price, and then subtracts a lump-sum discount once spending crosses the threshold. This design
amplifies the marginal benefit of the “next” item once customers are close to the threshold, thereby
encouraging larger basket sizes.

It therefore seems natural that online restaurants on third-party delivery platforms employ
STD schemes. These restaurants and platforms incur significant fixed costs—cooking, packaging,
and especially delivery—regardless of order size. Small orders often yield thin or negative mar-
gins once delivery costs are accounted for. By charging a delivery fee (which is often charged
by the platform) that is “waived” (often by the restaurant through payment reduction) for orders
above a threshold, restaurants and platforms shift part of these fixed costs onto buyers with small
orders and simultaneously encourage buyers to increase their order sizes. The result could be a
more efficient spreading of fixed costs over higher revenues, leading to improved profitability for
both restaurants and platforms.

1.1 Potential Pitfalls of STD Pricing

Despite its appeal, STD pricing can sometimes backfire in two ways: 1) buyer arbitrage through
low-value items and 2) ethical concerns for encouraging unnecessary purchases.

If a menu includes items whose list prices are below the value of the discount, a rational buyer
with an initial basket value just below the threshold can add a cheap item, trigger the discount,
and end up paying less than without the extra item. For instance, McDonald’s offers free delivery
for orders over $70 on a delivery platform in Hong Kong, with an $8 delivery fee for small orders.
A customer purchasing a McCrispy Combo at $64 can add large fries and a large drink for $3 each,
bringing the total to $70 and avoiding the delivery fee—ultimately paying $2 less than the original
total of $(64+8). Such loopholes—often found in restaurant menus with inexpensive add-ons like
rice bowls or soft drinks—can undermine the very profit gains the STD is designed to achieve.

In addition to the profit loss caused by those spending-upgraders, STD pricing can prompt
customers to purchase unnecessary food merely to meet the discount threshold. This often leads
to leftovers and food waste—especially among college students or young professionals, who may
have limited refrigeration options in their living or working spaces. In China, for example, users
aged 18–30 accounted for over 58% of Meituan’s delivery orders in 2020, a demographic less likely
to store excess food (MRI 2020). Similar numbers are observed on DoorDash and Uber Eats in the
United States (Mark 2025). Over time, these small increments of waste can accumulate into a sus-
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tainability problem: it was estimated that the yearly wasted food in the delivery channel in China
can feed the entire population in the city of Shanghai for 34 days (Zhao 2022). Over-consumption
is another concern. Research from the UK suggests eating a takeaway meal means consuming 200
more calories per day, on average, than food prepared at home, significantly increasing obesity
risks among young people (Roxby 2022). While such issues are not caused by STD pricing alone,
these pricing strategies can exacerbate both food waste and public health challenges.

Figure 1: The Age Distribution of Meal Delivery Platform Users in China (Source: Meituan, 2020)

1.2 Research Questions

Motivated by these observations, we ask the following questions.

• Profitability with rational customers. If customers are fully rational—maximizing a utility
that includes waste aversion without psychological constraints—is STD pricing still profit-
enhancing for a monopolistic online restaurant, when small-value items are on the menu? In
reality, not all customers are fully rational, but we aim to examine if STD pricing can help
improve restaurant profit even in the absence of psychological motivations.

• Impact on food waste. Compared to a standard per-unit pricing scheme with a delivery fee
charged by the platform, does STD pricing necessarily generate more food waste under the
rational-customer assumption? The answer to this question will help us understand how to
reduce food waste when restaurants use STD pricing.

• Trade-off under heightened waste aversion. If customers become more averse to waste—and
hence refrain from buying needless extras—how does this shift affect the restaurant’s prof-
itability under STD? Is there an inherent trade-off between reducing waste and maximizing
profits? This question will reveal whether restaurants using STD pricing have an incentive to
educate customers about food waste prevention.

• Policy remedies. Because educating customers to become waste-averse may not be feasible
or aligned with the restaurant’s profit-maximizing motive, regulatory interventions may be
necessary. Due to its dual implications to food waste and social welfare, whether and how
regulations related to STD pricing should be formed are still unclear. If regulators seek to curb
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food waste without unduly harming overall welfare, what measures can effectively constrain
STD practices (e.g., setting minimum thresholds, regulating platform-restaurant contracts)?

1.3 Main Findings

Our analysis yields four surprising insights:

• STD pricing is robustly profitable. Even when small-value items are available and buy-
ers derive disutility from needless extras, STD pricing dominates simple per-unit pricing for
almost all circumstances from the standpoint of a monopolistic online restaurant.

• STD pricing affects the restaurant profit in three ways. When a monopolistic online restau-
rant introduces a threshold-based discount besides simple linear pricing, there could be three
kinds of customers in terms of how they change their purchase decisions: 1) new buyers,
who would walk away if the discount does not exist, 2) spending upgraders, who increase
their basket sizes to qualify the discount, and 3) no-change customers, who behave as if
the discount were not offered. In contrast to simple linear pricing, the restaurant can raise
the marginal food price to some extent without losing buyers, because the discontinuity in
the average-price-volume curve created by the lump-sum discount allows the restaurant to
avoid the trade-off between the marginal price and the number of buyers. As a result, the
“new buyers” contribute to the restaurant profit positively as long as neither the threshold
nor the profit margin is too low, and buyers among the “no-change customers” will spend
more in aggregate as long as there are enough large orders to cover the loss from offering the
discount. However, spending upgraders—as long as they are rational—hurt the restaurant
profit because they only add items that are cheaper than the discount value offered.

• Restaurants can benefit from customers’ waste aversion when they use STD pricing. This
is because, under certain circumstances (e.g., low margin or large variance in customer will-
ingness to pay), there are no or few “new buyers” and thus educating customers to resist
unnecessary purchases can help the restaurant prevent the “spending upgraders” from hurt-
ing the profit while still profiting from the “no-change customers.”

• Simultaneous welfare gain and waste reduction is achievable through regulation. Well-
designed interventions—particularly regulating spending thresholds and constraining plat-
form commission rates/service fees—can create alignment between food sustainability and
economic goals. Social welfare increases and food waste decreases when platform fees are
capped at relatively low levels; conversely, a "double penalty" emerges when platform fees
rise.

1.4 Organization of the Paper

The rest of this paper is organized as follows. Section 2 reviews the related literature and explains
the position and contribution of this paper. Section 3 introduces the model, which is stylized but
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captures a sufficient level of complexity. In Section 4, we conduct our analysis in several steps
to answer our research questions one by one. In Section 5, we use specific numerical examples
to illustrate our main findings and use extensive examples to check the robustness. We finally
conclude this paper in Section 6. All the mathematical details and proofs can be found in the
appendix and the online supplement.

2 Literature Review

2.1 Food Waste and Sustainability

This research is situated within the expanding field of sustainable operations management, with
a particular focus on social responsibility as highlighted by Atasu et al. (2020). A critical and
increasingly prominent topic in this area is the reduction of food waste across all stages of the
supply chain, including production, shipping, retail, and consumption—an issue with profound
societal implications. According to the United Nations Food and Agriculture Organization (FAO
(2011)), consumers and retailers in industrialized countries waste approximately 222 million tons
of food annually, much of which is perfectly edible. Concurrently, the 2023 State of Food Security
and Nutrition in the World report estimates that 691–783 million people faced hunger in 2022,
representing an increase of 122 million since 2019 (FAO, IFAD, UNICEF, WFP and WHO 2024).
Furthermore, the Food Waste Index Report 2024 by the United Nations Environment Programme
(UNEP 2024) notes that food waste generates 8–10% of annual global greenhouse gas emissions—
nearly five times the emissions of the aviation sector.

Thus, reducing food waste can simultaneously improve food availability and significantly de-
crease greenhouse gas emissions, offering substantial benefits for society. Consequently, it has
emerged as a growing area of interest within the operations management (OM) community. Akkas
and Gaur (2022) recently outline a future research agenda for OM scholars in this domain. The
existing literature examines food waste in various contexts, including offline grocery retail, online
grocery retail, supply chains, and restaurants.

In offline grocery retail, Belavina (2021), Han et al. (2023), Jain et al. (2023), Wu and Honhon
(2023), Keskin et al. (2024), Sanders (2024), Kazaz et al. (2025), and Yang and Yu (2025) are the
notable studies. For example, Belavina (2021) investigates the impact of grocery store density
on both store- and consumer-level food waste; Han et al. (2023) study the role of ugly produce
retailers; Wu and Honhon (2023) examine the effects of Buy-One-Get-One-Free promotions on
profit and waste; Sanders (2024) analyzes the welfare effects of dynamic pricing and landfill bans;
Keskin et al. (2024) study the impact of blockchain technology on retailer profits and food waste
reduction; Yang and Yu (2025) explore the impact of surprise clearance sales; Kazaz et al. (2025)
investigate retail strategies to reduce waste from imperfect but edible produce; and Jain et al.
(2023) quantify expiration waste related to multiple expiration dates on store shelves. Our study,
similar to Wu and Honhon (2023), investigates the relationship between sales promotions and
food waste, but our focus is on the online food delivery market.
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In the context of online grocery retail, Belavina et al. (2017) compare the environmental and
financial performance of per-order and subscription revenue models, while Zhou et al. (2024) ex-
amine the effect of disclosing residual shelf life information to consumers. From a supply chain
perspective, Akkas and Honhon (2022) analyze the interplay between shipment policies and prod-
uct expiration, and Astashkina et al. (2019) investigate the environmental impact of online grocery
retailing across the entire supply chain. In the restaurant sector, Astashkina et al. (2024) exam-
ine how improved food accessibility, such as enhanced buffet convenience, affects plate waste
and profitability, while Nu et al. (2024) estimate the reduction in food waste resulting from AI-
powered digital tracking systems in commercial kitchens. Similar to Astashkina et al. (2024), we
also consider the role of customer education in reducing food waste.

Our contribution to this literature is to highlight a previously overlooked source of food waste:
extra purchases made by individuals in the food delivery market, prompted by intentional inter-
actions with pricing mechanisms. Our research integrates the decisions of platforms, restaurants,
and individual customers, focusing on their strategic interplay. Although this issue has received
limited attention in the past, it is becoming increasingly relevant due to the rapid growth and
widespread adoption of food delivery services. For instance, spending threshold discounts of-
fered by restaurants or delivery platforms can incentivize customers to purchase more than they
need. Our findings suggest that restaurants can benefit from educating customers to be more
waste-averse, thereby improving both sustainability and profitability. To our knowledge, we are
the first to examine food waste specifically within the food delivery channel—a rapidly growing
sector that processes hundreds of millions of orders daily worldwide and constitutes a significant
and rising contributor to overall food waste.

2.2 Food Delivery Industry and Regulations

Our work also relates to the growing literature on food delivery platforms and the related regu-
lations. Modeling studies in this area include Liu et al. (2021), Chen et al. (2022), Feldman et al.
(2022), Zhang and Yu (2023), Liu et al. (2023), and Zhang et al. (2022). Empirical and experimental
studies include Mao et al. (2022), Li and Wang (2024), Li and Wang (2025), and Lee et al. (2025).
Among these, Zhang et al. (2022) study the impact of various regulations on reducing traffic vio-
lations and accidents committed by delivery workers; Zhang and Yu (2023) investigate the effects
of two government regulations on the delivery workers’ welfare; and Li and Wang (2024) empir-
ically examine the impact of commission fee cap regulation on restaurant profits. Collectively,
these studies focus on the societal impact and governance issues associated with food delivery
platforms. Our research complements this literature by examining the environmental impact of
food delivery platforms, with a particular focus on food waste generation and reduction, as well
as related policy implications. Furthermore, we highlight that a restaurant’s incentive to educate
customers to be waste-averse is influenced by its cost structure, which is determined by the con-
tractual arrangement with the delivery platform. Consistent with Feldman et al. (2022), we adopt
a linear contract consisting of a commission rate and a fixed fee in our analysis.
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2.3 Volume-Discount Pricing

Our study also intersects with the literature on volume-discount pricing, extensively explored in
operations management and marketing (e.g., Spence 1977, Oren et al. 1982, Jeuland and Shugan
1983, and Weng 1995). Typically, this stream assumes that a seller offers a price-quantity menu in
a take-it-or-leave-it manner, with lower prices for larger purchase quantities. Three principal mo-
tivations for volume discounts have been identified in the literature (e.g., Buchanan 1952; Dolan
1987): perfect price discrimination for homogeneous buyers (e.g., Buchanan 1952), partial price
discrimination for heterogeneous buyers (Spence 1977; Oren et al. 1982), and channel efficiency
(e.g., Jeuland and Shugan 1983, Monahan 1984, Lal and Staelin 1984, Lee and Rosenblatt 1986,
Dada and Strikanth 1987, and Weng 1995). For a comprehensive review of this literature, see
Dolan (1987). Our work aligns with the second motivation, as STD pricing enables partial price
discrimination among heterogeneous customers with varying demand sizes. STD pricing consti-
tutes a discontinuous pricing curve, characterized by a sudden reduction in average price result-
ing from a payment reduction, in contrast to continuous schemes such as per-unit pricing plus a
fixed fee, where the average price changes continuously. Several studies have examined discon-
tinuous volume discounts, including those with a single price break-point (e.g., Federgruen and
Lee 1990; Xu and Lu 1998; Altintas et al. 2008) and multiple price break-points (e.g., Chung et al.
1987). We contribute to the literature by highlighting the distinctions between discontinuous and
continuous volume-discount schemes for their implications in customer purchasing behavior and
waste generation. To the best of our knowledge, this is the first in-depth analysis of the economic
value and environmental impact of STD pricing in the food delivery platform context.

3 The Model

We consider a stylized model wherein a single monopolistic restaurant offers “free delivery” for
online orders that meet a spending threshold, while the delivery fee is charged by the delivery
platform. The restaurant has a unit mass of infinitesimal potential online customers. We focus
on the sequential sub-game between the restaurant and the online customers, wherein the restau-
rant’s pricing decision is the first move followed by customers’ purchase decisions.

3.1 Customers

Customers are heterogeneous in both their marginal willingness to pay (MWTP) and demand for
food. Let θ denote a customer’s demand for food (i.e., the ideal consumption level, measured by
weight or portion), which is uniformly drawn from

[
0, θ̄
]
, and q the actual purchase amount of

food from the restaurant. We consider continuous purchase quantities, which reflect the availabil-
ity of small items on the menu. Each customer knows his/her own θ, decides on q, and aims to
maximize the net utility of food consumption, which is the gross utility net of the payment to the
restaurant. We assume that the gross utility of a customer is composed of four parts:
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1) α, a baseline utility;

2) −β · θ, a loss caused by hunger, wherein β is the marginal value of food for the customer;

3) β ·min {q, θ}, a utility restoration due to food consumption, which is bounded by β · θ; and

4) −γ ·max {0, q− θ}, a loss caused by over-consumption or throwing away the extra food.

Note that such a setting is able to capture the asymmetry between the underage loss (i.e., −β ·
[θ −min {q, θ}]) and the overage loss (i.e.,−γ ·max {0, q− θ}), wherein β > 0 and γ ≥ 0 measure,
respectively, the marginal losses of utility caused by underage and overage. Regardless of how
customers deal with the extra food (i.e., over-consuming or disposing of), we define max {0, q− θ}
as the amount of food waste generated by a customer. We assume that customers are heteroge-
neous in β, which is called the MWTP hereafter. Note that, there are two major user groups of
food delivery platforms: young white-collars and college students. The former group normally
has a higher MWTP than the latter, partly due to more expensive outside options they face (i.e.,
college students have student canteens as their outside options). Hence, we assume that β follows
a two-point distribution on {βL, βH}, with βL < βH and h = Pr (β = βH) represents the propor-
tion of young white-collars. Since our theoretical results are not sensitive to the heterogeneity of
γ, we assume customers are homogeneous in this aspect for the sake of simplicity. Lastly, let P (q)
denote the payment value for a purchase order of volume q. Mathematically, a customer with θ,
β, and q receives below net utility:

U (q|θ, β) = α− β · θ + β ·min {q, θ} − γ ·max {0, q− θ} − P (q) . (1)

We define the two-dimensional tuple, (θ, i), as the type of a customer, whose demand is θ and
MWTP is βi (i = L, H). A customer of type (θ, i) solves the problem of maxq≥0 U (q|θ, βi). Let
q∗i (θ|P) denote the optimal purchase volume of a type-(θ, i) customer under payment function P.

3.2 The Restaurant

The restaurant serves online customers only (i.e., a “cloud kitchen”; Lucas 2021), knows well the
potential demand from the online channel, and is not constrained by a finite inventory of food
materials. We also abstract away from potential congestion caused by random customer arrivals
and a limited service capacity, because the waiting time is normally well anticipated by online
customers. As a result, we assume that the demand is deterministic and sales to customers are
independent. The restaurant aims to maximize its total profit from a single interaction with all the
potential online customers by designing the payment function P.

The restaurant decides on the marginal food price, p, and the spending threshold, v̄, while the
delivery fee, L, is always charged by the platform. Accordingly, we have

P (q) = L · I {q > 0}+ p · q− L · I {p · q ≥ v̄} , (2)
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wherein I is a binary indicator. Note that, given p, the spending threshold is equivalent to a
volume threshold: Q = v̄/p. Hence, we focus on Q hereafter instead of v̄, and the payment
function P is fully characterized by (p, Q).

After receiving the payment from a customer, the platform withholds a sum that consists of the
delivery fee (paid by the customer to the platform), the commission based on the value paid by the
customer to the restaurant, and a service fee, w. Then, the platform transfers the remaining value
to the restaurant. Let s denote the commission rate and c the marginal cost of food. Therefore,
given pricing decisions (p, Q), the restaurant’s profit from a customer buying q units of food is

π (q, p, Q) =P (q)− L · I {q > 0} − s [P (q)− L · I {q > 0}]− w− cq

= (1− s) [p · q− L · I {q ≥ Q}]− w− cq (3)

The platform solves the problem of

max
p,Q≥0

Π (p, Q) = ∑
i=L,H

hi

∫ θ̄

0
π (q∗i (θ|p, Q) , p, Q)

dθ

θ̄
, (4)

wherein we define hH = h and hL = 1− h.

3.3 Technical Assumptions

To avoid unnecessary complexity, we make the following two assumptions throughout the paper.

Assumption 1. Positive Margin: c < (1− s) βL.

This assumption ensures that when the marginal food price p = βL, there exists a profitable,
finite purchase quantity for the restaurant. In other words, it is a necessary condition for the
restaurant to make a positive profit from low-MWTP customers. Otherwise, the restaurant will
focus on high-MWTP customers only and thus the results will be trivial.

Assumption 2. Rich Pricing Designs: L/ (βH − βL) + L/ (βL + γ) < θ̄.

This assumption ensures that the set of potentially optimal (p, Q) designs for the restaurant
is large enough. It requires that both high- and low-MWTP customers possess significantly high
MWTPs and exhibit significant heterogeneity in their MWTPs (i.e., the difference βH − βL is rela-
tively large), compared to the delivery fee L. Without this assumption, the optimal (p, Q) design
is trivial because customers are relatively homogeneous and there is not much room for setting
the price. Its technical implications will be clearer in the next section.

4 Analysis

In this section, we first solve out q∗i (θ|p, Q) for each customer type to see when extra purchases
will occur. Then, we optimize the restaurant’s (p, Q) design to evaluate whether a discontinuous
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payment-volume curve (i.e., a finite Q) is preferred to a continuous, linear curve (i.e., Q = +∞).
Next, we study when food waste occurs and explore potential regulations to achieve both food
waste reductions and social welfare increases. Last, we compare two extreme cases of γ and study
the conditions and reasons for the restaurant to share an interest in reducing food waste.

4.1 Customer Purchase Decision

From Equation (1), we can see that the net utility of a customer is piece-wise linear in q and there
are only three possible purchase volumes for a customer with inherent demand θ: 0, θ, and Q.
The optimal choice depends on the demand value and the (p, Q) design. Some customers strictly
prefer one of the three volumes, while others are indifferent between two or more volumes. For the
ease of exposition, we define the following critical demand values for type-i customers (i = L, H)
when p ≤ βi: 

θNJ
i (p) =

 L
βi−p if p < βi

+∞ if p = βi

;

θNT
i (p, Q) = (γ+p)Q

γ+βi
;

θ JT (p, Q) = Q− L
γ+p .

(5)

In Equation (5), N stands for No purchase (i.e., q = 0), J for buying Just enough (i.e., q = θ), and T
for buying up to the Threshold (i.e., q = Q). Customers with critical demand values are indifferent
between the two relevant purchase volumes. Based on the order of these critical values, we define
two scenarios to describe the purchase pattern of customers with the same MWTP.

Definition 1. Scenario of Zero “New Buyers” (σ1): θNJ
i (p) < θNT

i (p, Q) < θ JT (p, Q).

Definition 2. Scenario of Some “New Buyers” (σ2): θ JT (p, Q) ≤ θNT
i (p, Q) ≤ θNJ

i (p).

The meanings and implications of the two scenarios are illustrated by Figure 2. In each sub-
graph, we plot the three lines in a two-dimensional plane with the horizontal axis representing a
customer’s inherent demand and the vertical axis representing utility. The three lines correspond
to the three purchasing volumes mentioned above. For a customer of a certain demand value θ, the
optimal purchase volume corresponds to the highest line. In Scenario σ1, the MWTP (represented
by the slope of the solid line) or the threshold is relatively high, and thus customers with rela-
tively low demand values (i.e., θ ∈

[
θNJ

i (p) , θ JT (p, Q)
)

) would like to make purchases without
qualifying the discount; if we increase the threshold Q, the number of these buyers will increase;
even when the discount is removed (i.e., Q = +∞), all the buyers (i.e., θ ≥ θNJ

i (p)) will still make
purchases. Hence, no “new buyers” will be acquired by adding the specific threshold-based dis-
count to the linear pricing scheme in the example. In Scenario σ2, the MWTP or the threshold is
relatively low; if we remove the discount, some buyers (i.e., θ ∈

[
θNT

i (p, Q) , θNJ
i (p)

)
) will quit

buying. Hence, some “new buyers” will be acquired by adding the specific threshold-based dis-
count to the linear pricing scheme in the example. The distinction between the two scenarios is
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Figure 2: The Two Scenarios of Purchase Pattern for Customers of the Same β

important, because in our model setting the restaurant can benefit from the “new buyers” but will
suffer from the “spending upgraders.”

Obviously, σ1 and σ2 are mutually exclusive for type-i customers (i = L, H), and the following
lemma shows that they are also collectively exhaustive. The restaurant can determine the scenario
for type-i customers by adjusting (p, Q). Given p < βi, let Qe

i (p) denote the maximum volume
threshold that puts type-i customers into σ2; it is easy to derive that

Qe
i (p) =

L
βi − p

+
L

γ + p
. (6)

Hence, Q > Qe
i (p) corresponds to type-i being in σ1. In fact, we have θ JT (p, Q) = θNT

i (p, Q) =

θNJ
i (p) when Q = Qe

i (p). This reminds us that our Assumption 2 ensures that type-H customers
can be put into either σ1 or σ2 by adjusting Q when p = βL. In this way, we do not constrain the
search space for the optimal (p, Q) design to a single scenario.

Lemma 1. For type-i customers (i = L, H), σ1 and σ2 are collectively exhaustive given p ≤ βi.

Therefore, our analysis can focus on the two scenarios and we derive the following proposition
to describe the optimal purchase decisions of customers of different types. The result says that,
given any pricing scheme, a customer will purchase extra food only if the inherent demand is close
to but not higher than the volume threshold; type-i customers will not make any extra purchases
if the price is high enough such that p ≥ βi. Without loss of generality, we assume that a customer
will choose the larger purchase volume when s/he is indifferent between two purchase volumes.

Proposition 1. Given pricing scheme (p, Q), a type-i customer (i = L, H) with demand θ chooses the
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optimal purchase volume q∗i (θ|p, Q) in the following way. In Scenario σ1 wherein Q > Qe
i (p),

q∗i (θ|p, Q) =


0 if p > βi or (p = βi and θ < Q) or

(
p < βi and θ < θNJ

i (p)
)

;

θ if p < βi and
(

θ ∈
[
θNJ

i (p) , θ JT (p, Q)
)

or θ ≥ Q
)

;

Q o.w..

(7)

In Scenario σ2 wherein Q ≤ Qe
i (p),

q∗i (θ|p, Q) =


0 if p > βi or (p = βi and θ < Q) or

(
p < βi and θ < θNT

i (p, Q)
)

;

θ if p < βi and θ ≥ Q;

Q o.w..

(8)

4.2 Optimal Pricing

Given customer optimal purchase decisions, we now solve for the restaurant’s optimal (p, Q)

design. To begin, we define two types of pricing schemes below.

Definition 3. Boundary Threshold Pricing (BTP): p ∈ {βL, βH} and 0 < Q < +∞.

Definition 4. Simple Linear Pricing (SLP): 0 ≤ p ≤ βH and Q = +∞.

Note that both BTP and SLP can be regarded as special forms of STD pricing. In particular,
the marginal food price under BTP is restricted to the set of customer MWTPs, while the volume
threshold under SLP is restricted to infinity. In addition, while BTP has a discontinuous payment-
volume curve, SLP is a continuous volume-discount scheme from a customer’s perspective be-
cause the average food price is L/q + p. As shown later, the optimal STD pricing scheme is either
BTP or SLP under a mild condition. Therefore, we can compare optimal BTP against optimal SLP
to investigate the impact of average-price discontinuity on the restaurant’s profit.

In the next step, we divide our analysis into two parts according the marginal food price level.
When the price is high, only customers with high MWTP would purchase from the restaurant,
and we call this case skimming pricing. When the price is low enough, customers with both high
and low MWTPs would make purchases, and we call this case inclusive pricing.

4.2.1 Skimming Pricing (βL < p ≤ βH)

Under skimming pricing, the restaurant only focuses on type-H customers and the problem is
equivalent to the optimization of (p, Q) with hH = 1. The following lemma shows that the optimal
(p, Q) design is BTP when customers are homogeneous in their MWTP.

Lemma 2. When hi = 1 (i = L, H), the optimal pricing scheme is BTP with p∗ = βi and

Q∗ =
(1− s) L + w
(1− s) βi − c

. (9)
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4.2.2 Inclusive Pricing (p ≤ βL)

Under inclusive pricing, there are three possible cases. Case I: both type-H and type-L customers
are in σ1. Case II: type-H customers are in σ1 and type-L in σ2. Case III: both type-H and type-L
customers are in σ2. Note that, θNJ

i (p) is decreasing in βi and θ JT (p, Q) is independent of βi, so
it is impossible to have type-H customers in σ2 (i.e., θ JT (p, Q) < θNJ

H (p)) and type-L in σ1 (i.e.,
θNJ

L (p) < θ JT (p, Q)) at the same time. For i ∈ {L, H}, denote Πi (p, Q|σ) as the restaurant’s total
profit conditional on 1) hi = 1 and 2) all the customers are in Scenario σ (= σ1, σ2). The following
lemma shows how the restaurant can improve its profit from only type-H or type-L customers by
adjusting the marginal food price and/or the volume threshold according to σ.

Lemma 3. Given two pricing designs (p, Q) and (p′, Q′) such that p < p′ ≤ βL and Q′ = Q ·
(p + γ) / (p′ + γ) < Q ≤ θ̄, the total profit from type-i customers satisfies Πi (p, Q|σ1) < Πi (p, ∞|σ1)

and Πi (p, Q|σ2) < Πi (p′, Q′|σ2).

Hence, the restaurant can improve the total profit in Case I by setting Q to ∞ (i.e., removing
the “spending upgraders”) and in Case III by setting p to p′ and Q to Q′ (i.e., improving profit
margin and acquiring more “new buyers”). In other words, any pricing scheme (p, Q) in Case I is
dominated by SLP and any pricing scheme (p, Q) in Case III is dominated by BTP with p′ = βL

and Q′ = Q · (p + γ) / (βL + γ). However, it is not clear how the total profit can be improved
in Case II, because customers are in different scenarios. The next proposition first proves that the
restaurant should adopt either SLP or BTP in most cases, and then it gives a sufficient condition
for BTP to be the dominant pricing scheme.

Proposition 2. There exist θ̃1 and θ̃2, where θ̃1 ≤ θ̃2. Given θ̄ ≥ θ̃1, the optimal pricing scheme for the
restaurant under inclusive pricing is either BTP or SLP; given θ̄ ≥ θ̃2, BTP is better than SLP.

The conditions require θ̄, representing the maximum customer demand, to be sufficiently large.
Since a "customer" in our model can represent a group of buyers (e.g., students in a dormitory
room, and white-collar workers in a team), θ̄ can be quite large in reality. Under these mild con-
ditions, combining Lemma 2 with Proposition 2, we conclude that the optimal pricing scheme is
either the optimal skimming pricing or the optimal inclusive pricing. Our numerical examples in
Section 5 show that these results hold even for small θ̄.

4.2.3 Optimal Price Level

Next, we focus on BTP and show how the price level should be determined. In particular, we
consider the influence of the market composition parameter h, which represents the proportion
of high-MWTP customers. The following proposition characterizes how h affects the restaurant’s
optimal pricing decision.

Proposition 3. Given θ̄ ≥ θ̃2, there exists a threshold h̃ ∈ [0, 1) such that the optimal pricing scheme for
the restaurant is inclusive (i.e., p = βL) if h < h̃ and is skimming (i.e., p = βH) if h ≥ h̃.
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Intuitively, it is optimal for the restaurant to adopt inclusive pricing when the market has a
higher proportion of low-MWTP customers, and skimming pricing when high-MWTP customers
are more prevalent. Note that when h = h̃, the restaurant is indifferent between skimming pricing
and inclusive pricing, but we assume that the restaurant prefers skimming pricing in this case.

4.3 Food Waste

Here, we study whether food waste will be generated if the restaurant optimizes the (p, Q) design.
First, under skimming pricing, we know that the optimal price for the restaurant is p = βH and
thus the critical demand values for type-H customers are θNJ

H (p) = ∞, θNT
H (p, Q) = Q, and

θ JT (p, Q) < Q. As a result, type-H customers are in scenario σ2. According to Proposition 1, we
have q∗H (θ|p, Q) = 0 or θ, so there is no food waste under skimming pricing.

Next, for inclusive pricing, we focus on the case of a sufficiently large θ̄ required by Proposition
2 and thus the optimal pricing scheme is BTP. Therefore, the optimal price for the restaurant is p =

βL and thus, according to the above logic, there is no food waste from type-L customers. However,
we know from Proposition 1 that all the “new buyers” and “spending upgraders” among the type-
H customers (i.e., θ ∈

(
max

{
θNT

H (p, Q) , θ JT (p, Q)
}

, Q
)
) will purchase extra food and generate

food waste. We formally state this result in the next proposition.

Proposition 4. If the restaurant optimizes the (p, Q) design, food waste is generated only when h < h̃; the
food waste, if any, is generated by type-H customers.

This proposition predicts that white-collar workers are more likely than college students to
generate food waste due to their higher MWTP. Given that the restaurant chooses a price level
that college students can just afford, the delivery fee is a crucial factor that prevents college stu-
dents from using the food delivery platform; college students would rather go to their university
canteens if the delivery fee cannot be waived or they have to buy extra items to avoid the delivery
fee. In contrast, many white-collar professionals can afford to purchase meals online even without
the discount, and thus the discount is an extra benefit for them if they can add some small items
to get qualified; some other white-collar professionals are reluctant to order food from the restau-
rant due to their small demand relative to the delivery fee, but they will make a purchase if the
delivery fee can be waived by adding some small items.

How does Q affect food waste? In Figure 3, we compare two BTP designs with the same
parameters except Q. In the left sub-graph, Q is smaller and food waste is produced by the “new
buyers” and “spending upgraders” among the type-H customers. In the right sub-graph, Q is
larger; food waste is only produced by the “spending upgraders” among the type-H customers,
but there is more food waste. (Note: the two shaded triangles are congruent.)

The next proposition formally states how the food waste is affected by the volume threshold
Q. Crucially, we find non-monotonicity in this relationship, which is valuable in guiding the for-
mation of regulations. First, since the restaurant’s optimal volume threshold depends on various
business parameters—such as the service fee and the commission fee charged by the food deliv-
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Figure 3: How Food Waste Is Affected by Volume Threshold

ery platform—understanding how Q affects food waste can help guide the regulation of contract
terms between a restaurant and a platform. Second, in a hypothetical scenario where a regulator
directly imposes a restriction on Q, this analysis can shed light on the potential for such a regula-
tion to reduce food waste. Since food waste is absent when h ≥ h̃, our subsequent discussions are
restricted to the market scenario of h < h̃.

Proposition 5. Given that h < h̃ and the restaurant sets p = βL, the total food waste is a non-monotonic
function of Q: it strictly increases with Q for Q ∈ [0, Qe

H (βL)), remains constant for Q ∈
[
Qe

H (βL) , θ̄
)
,

strictly decreases with Q for Q ∈
[
θ̄, θ̄ + L/ (βL + γ)

)
, and equals zero for Q ≥ θ̄ + L/ (βL + γ). The

food waste ratio (defined as the ratio of total food wasted to total food purchased via the delivery platform)
increases with Q for Q ∈ [0, θ̄), decreases with Q in Q ∈

[
θ̄, θ̄ + L/ (βL + γ)

)
, and equals zero for

Q ≥ θ̄ + L/ (βL + γ) .

Hence, if the restaurant optimizes the (p, Q) design and the optimal Q is relatively low, it is
possible for the regulator to reduce food waste by reducing Q through regulating the platform
fees or setting an upper bound on Q; if the optimal Q is relatively high for the restaurant, food
waste reduction could be achieved by increasing Q through similar measures. Nevertheless, if
the (p, Q) design is not optimized, we do not have a theoretical guidance on how to reduce food
waste. That being said, we can show with extensive numerical examples (see Section 5.2) that,
compared to an arbitrary (p, Q) design, food waste can be significantly reduced in most cases if
the restaurant switches to the optimal (p, Q) design. Therefore, optimal pricing is important for
food waste reduction. On top of optimal pricing, food waste could be further reduced through
regulation. In the next section, we will discuss how to regulate the contract terms.

4.4 Regulating Contract Terms

This section explores regulatory interventions to reduce food waste. Ideally, regulators aim to
do so without sacrificing social welfare. For the welfare analysis, we introduce k to denote the
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platform’s fixed service cost for each order, and we assume that the delivery fee is bounded by a
multiple of k: L > k · (βH − βL) / (βL − c). The following proposition establishes a key linkage
between the total welfare and the volume threshold, and the relationship is non-monotonic.

Proposition 6. Let Qsb > 0 be the socially break-even volume threshold that depends on k. Given h < h̃
and pricing design (βL, Q), the social welfare decreases in Q for Q ∈ [Qsb, θ̄), increases in Q for Q ∈
[0, Qsb) ∪ [θ̄, θ̄ + L/ (βL + γ)), and remains constant for Q ≥ θ̄ + L/ (βL + γ).

The rationale is straightforward: when Q is below Qsb, increased Q can improve social welfare
by discouraging small orders and boosting order sizes; when Q is above Qsb, increased Q reduces
the number of buyers and thus reduces the social welfare. Proposition 5 and 6 together indicate
the possibility of simultaneously reducing food waste and enhancing social welfare. To be specific,
we should reduce Q if the current threshold is relatively low and increase it if the current level is
extremely high.

Next, we examine how regulators can influence Q indirectly by targeting the contract terms—s
and w—between the restaurant and the platform. Establishing monotonic relationships between
Q and these contract terms is crucial for predicting regulatory impact. The following proposition
derives a sufficient condition for such relationships to hold. It requires that the profit margin for
the restaurant is not too low, the MWTP gap between type-H and type-L customers is not too
large, and the fees (i.e., s and w) charged by the platform are not too high. The impacts of s and w
on Q are mainly through the restaurant’s profit margin. The higher the margin, the easier for the
restaurant to set a low threshold that encourages low-demand customers to make purchases.

Proposition 7. Given h < h̃, the optimal volume threshold increases with both the commission rate and
the service fee if

(1− s) βL − c >
w
L + 1−s

1−h
1

βH−βL
+ 1

γ+βL

. (10)

With these monotonic relationships, we can conclude that capping the commission rate and
the service fee at low levels can, in most cases, yield a “win-win” outcome—simultaneously im-
proving social welfare and reducing food waste. We formally state this result in the following
corollary. It is noteworthy that our theory is built on the assumptions of our base model. Our
robustness checks in Section 5.6 confirm that these conclusions generally hold.

Corollary 1. Given h < h̃ and the condition in Equation (10), the regulator can simultaneously achieve
(at least weakly) social welfare improvement and food waste reduction by capping s and w.

4.5 Increasing Aversion to Waste

Regulation may not always be effective in reducing food waste in the delivery market as it can re-
ceive resistance from the firms. An alternative strategy involves educating customers and encour-
aging them to be mindful of their consumption amounts. However, implementing this approach
may impact the restaurant’s profitability if customers alter their purchasing behavior in order to
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reduce food waste. In this section, we examine how the restaurant profit will be affected if we can
successfully educate customers and increase their aversion to food waste.

Our theoretical analysis focuses on two contrasting scenarios: one characterized by zero waste
aversion (γ = 0) and the other by infinite waste aversion (γ = +∞) among customers. The
case of γ = 0 reflects the current state where individuals exhibit limited sensitivity towards food
waste, while γ = +∞ represents a society where people are well-informed and actively strive to
minimize any wastage. These extreme cases serve as valuable benchmarks for understanding the
potential range of behaviors. In addition, our extensive numerical examples consistently demon-
strate that the restaurant’s preference aligns with either γ = 0 or +∞; there exist no intermediate
scenarios that are preferable from the restaurant’s perspective. The next proposition shows how
the restaurant’s preference over γ depends on the market characteristics.

Proposition 8. The restaurant’s optimal total profit with γ = +∞ is higher than that with γ = 0 if

w + (1− s) L
(1− s) βL − c

≥ L
βH − βL

+
L

βL
; (11)

the reverse is true if
(1− h)w + (1− s) L
(1− h) [(1− s) βL − c]

≤ L
βH − βL

. (12)

Clearly, the parts on the left side of the above inequalities are increasing in the marginal food
cost c; if c is large enough, the restaurant’s total profit with γ = +∞ is larger than with γ = 0.
This is because, when the profit margin is low, the optimal volume threshold for the restaurant
tends to be high; otherwise, customers with low demand can get the discount and cause losses to
the restaurant. As we mentioned earlier in Section 4.1, STD pricing cannot acquire “new buyers”
when the volume threshold is high (i.e., customers are in σ1), and thus the restaurant prefers to
reduce the number of “spending upgraders” by raising γ. Conversely, when c is low and the
profit margin is high, the restaurant can afford to offer a low volume threshold that can attract
“new buyers” that are waste-insensitive (i.e., customers are in σ2).

Another important factor is the gap between βH and βL; note that the right-hand-side parts
of the above inequalities are decreasing in this gap. The underlying rationale is similar. When
βH − βL is large enough and the marginal food price is p = βL, type-H customers would like
to make a purchase even with a low demand; thus, if the optimal volume threshold is not low
enough, type-H customers are likely in σ1, in which STD pricing cannot acquire “new buyers.”
Hence, the restaurant prefers to have waste-averse customers when βH − βL is large enough, and
vice versa.

In addition, the restaurant’s total profit with γ = +∞ is larger than with γ = 0 if w is large
enough, s is large enough, or L is small enough. The rationales are similar to the impact of c.
Therefore, under such conditions, the restaurant should be self-motivated to educate customers
about avoiding food waste. In Section 5.4, we will use extensive numerical examples to show that
these results about the restaurant’s preference over γ generally hold.
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4.6 The Value of STD Pricing

The result of the previous section is counter-intuitive to some extent, because people normally
think that it is profitable for the restaurant to induce customer extra purchases when STD pricing is
adopted. However, the intuition is not always correct, especially when customers are fully rational
(i.e., free of psychological effects). According to Proposition 2, we know that BTP is strictly better
than SLP regardless of γ as long as θ̄ is large enough. If the restaurant cannot benefit from extra
purchases of customers (i.e., γ = +∞ is preferred), why should the restaurant use BTP? In this
section, we demonstrate that BTP or STD pricing in general can benefit the restaurant by attracting
more modest-size orders and enhancing profit margins of large orders.

First, STD pricing can attract more customers with modest demand by offering a lump-sum
discount (i.e., acquiring “new buyers”). We formally state this result in the next proposition. To
prepare, we define the term “buyer base” as the total number of customers that make a purchase.

Definition 5. Buyer base under pricing scheme (p, Q):

B (p, Q) = ∑
i=L,H

hi

∫ θ̄

0
I {q∗i (θ|p, Q) > 0} dθ

θ̄
. (13)

Proposition 9. B (p, Q) ≥ B (p,+∞).

Figure 4 illustrates the rationale of how STD pricing expands the buyer base when γ = +∞,
by showing how the average price changes with the purchase volume. In mathematical terms,
SLP has continuous average price curves, and thus the buyer base shrinks if we increase the food
price. In contrast, STD pricing has a discontinuous average price curve, which is flat for q ≥ Q;
hence, as long as the marginal food price p is below the MWTP β, the buyer base is determined by
the volume threshold Q: the lower Q is, the larger the buyer base. Essentially, SLP is a form of price
discrimination in the sense that the average price decreases with the order size; STD pricing removes the
price discrimination for volumes above the threshold by subsidizing the buyers with a lump-sum discount,
which allows the restaurant to avoid to some extent the trade-off between the marginal food price and the
number of buyers.

Therefore, in comparison to the case of SLP or continuous volume-discount strategies, the
lump-sum discount offered under STD pricing on the one hand induces order-size expansion that
causes losses, but on the other hand it increases the restaurant profit in two ways: bringing in
more modest-size buyers and enhancing the profit margin for large orders. As long as the profit
margin is high enough, bringing in buyers with modest demand can generate positive profits.
In addition, with a higher price, the larger the order size, the more the restaurant can extract
surplus from the buyer. These ideas are illustrated by Figure 5. In particular, if we compare the
top-left sub-graph (representing SLP with a lower food price) against the bottom-right sub-graph
(representing STD pricing with a higher price), we can see that the profit increase comes from two
parts: a positive profit generated by additional modest-size orders and an additional profit from
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Figure 4: STD Pricing Can Expand the Buyer Base when γ = +∞
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Figure 5: STD Pricing Can Increase Profit when γ = +∞

20



large orders enabled by the increased margin. The following proposition proves this result at the
level of individual orders.

Proposition 10. For any order size q > 0 that exists under both (p, Q) and (p′,+∞), wherein p > p′,
we have π (q, p, Q) > π (q, p′,+∞) if and only if q ∈ (0, Q) ∪ (max {Q, L/ (p− p′)} ,+∞).

As a result, STD pricing can do better than SLP in general. This explains the logic behind
Proposition 2 and reveals the true value of STD pricing when customers are fully rational.

5 Numerical Examples

In this section, we use extensive numerical examples to illustrate the main findings of this paper
and also to check the robustness of them.

5.1 Optimal Pricing

We first check the possible θ̄ (i.e., the largest possible demand) values to satisfy the conditions
specified by Proposition 2 and we depict our computation results in Figure 6. The parameters,
βL = 3, w = 1, s = 0.2, L = 1, γ = 0.2, and h = 0.3, are held constant across all examples. In each
panel, we explore 2,793 combinations of

(
c, θ̄
)
, for which c ranges from 0.1 to 2.5 and θ̄ from 2 to

30. In the left panel, where we set βH = 3.5, the sufficient condition is relatively difficult to satisfy
when the unit food cost is low. We can see that, when the unit food cost is normalized to 1 and the
optimal unit price is about 3, the optimal pricing scheme is BTP as long as θ̄ is greater than 8 or the
largest possible order value (i.e., θ̄ · p) is greater than 24. In the USA, we know that the average
order value on the food delivery platforms is about $30 and the delivery fee is about $5. If we
scale these numbers back to the realistic setting, it means that, the optimal pricing scheme is BTP
as long as the largest possible order value is greater than $120, which is still possible in the real
world. When the food cost is higher, the sufficient condition is easier to satisfy. Note that this is a
sufficient condition for either BTP or SLP to be the optimal pricing scheme. In fact, the maximum
possible order value does not have to be as high as $120.

Between BTP and SLP, the former is almost always better as long as θ̄ satisfies the above suf-
ficient condition. When the food cost is too high and θ̄ is too low, the restaurant optimal profit is
zero under either SLP or BTP. Therefore, STD pricing is always preferable for the restaurant.

5.2 Food Waste

In Figure 7, we investigate the impact of pricing on food waste using three sets of parameters.
In each set, we focus on a unique combination of (βH, c) and explore 100 different combina-
tions of (L, s). The range of L is [1, 2] and for s is [0.1, 0.5] with constant step sizes. The pa-
rameters, βL = 3, w = 1, γ = 0.2, h = 0.3, and θ̄ = 12, are held constant across all exam-
ples. Within each parameter setting, we explore 10,000 (p, Q) designs through a linear search
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Figure 6: The Sufficient Condition for the Optimal Pricing Scheme to Be SLP or BTP

in [c, βH ]×
[
0, θ̄ + L/ (βL + γ)

]
, exclude those infeasible designs that lead to a non-positive profit

for the restaurant, and determine the maximum, average, and minimum food waste under the
feasible ones. Additionally, we identify the optimal (p, Q) design and the associated food waste,
referred to as the “optimal food waste.” We then compare the optimal food waste (Wopt) with the
maximum (Wmax), average (Wavg), and minimum (Wmin) food waste among the feasible designs,
calculating the percentage difference: 100% ×

(
Wopt −Wj

)
/Wj (where j = max, avg, min). For

each set, we have 100 samples for these comparisons based on the 100 different combinations of
(L, s), and we present them in three histograms.

The percentage difference in food waste between Wopt and Wmax or Wavg quantifies the po-
tential reduction in food waste achievable by transitioning from an arbitrary (p, Q) design to the
optimal (p, Q) design. As depicted in the left and center panels of Figure 7, optimizing the (p, Q)

design can lead to a reduction in food waste ranging from 60% to 100%. Conversely, the percentage
difference in food waste between Wopt and Wmin indicates the additional reduction in food waste
that could be achieved by regulating the restaurant’s volume threshold or revising the contract
terms with the platform. The right panels show that even after optimizing the (p, Q) design, there
remains substantial potential (over 90%) for further reducing food waste through regulations.

5.3 Regulation

In the next two figures, we delve into the effects of the platform commission rate and service
fee on the restaurant’s optimal volume threshold, food waste, and social welfare. The objective
is to assess whether regulating the commission rate or service fee could lead to a reduction in
food waste and an enhancement in social welfare simultaneously, and to elucidate the underlying
reasons for such outcomes. Throughout these numerical analyses, we maintain the parameters
βH = 3.5, βL = 3, γ = 0.2, L = 1, w = 1, s = 0.2, θ̄ = 12, and h = 0.3 as constants for consistency.
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Figure 7: The Impact of Pricing on Food Waste

Figure 8: The Impact of Platform Commission Rate
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In Figure 8, we examine the influence of the commission rate (s) under two scenarios: low food
cost (c = 1) and high food cost (c = 2). Our findings reveal a non-monotonic relationship between
s and the optimal Q: as s increases, the optimal Q initially rises, reaches a peak, then declines when
the high s triggers the shift towards skimming pricing, before ascending once more. Consequently,
the impact of s on food waste also follows a non-monotonic pattern. However, the effect on social
welfare exhibits a monotonic trend: social welfare decreases with increasing s. Thus, a reduction in
s could lead to a simultaneous decrease in food waste and an increase in social welfare, provided
that s is not already at an excessively high level.

In Figure 9, we explore the effects of the service fee (w) in the contexts of low food cost (c = 1)
and high food cost (c = 2). The findings mirror those observed for the commission rate: the
impact of w on the optimal volume threshold, food waste, and social welfare displays similar
non-monotonic trends. Consequently, it is plausible to achieve a reduction in food waste and an
improvement in social welfare concurrently by lowering the service fee, as long as the initial value
of w is not excessively high.

Figure 9: The Impact of Platform Service Fee

5.4 Aversion to Waste

In Figure 10, we investigate the influence of waste aversion (γ) in three scenarios while holding
the following parameters constant: βL = 3, s = 0.4, w = 1, L = 1, h = 0.3, and θ̄ = 8. Across
all three cases, food waste exhibits a consistent decrease with increasing γ. However, the impact
on the restaurant’s optimal profit can vary, showing a decreasing, increasing, or non-monotonic
trend in relation to γ.
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Figure 10: The Impact of Waste Aversion

In Case I, which serves as the baseline, the restaurant benefits from most customer orders,
resulting in a low optimal volume threshold. As γ increases, customers with inherent demand
below the volume threshold may cease purchasing up to the threshold to avail the discount, con-
sequently impacting the restaurant’s profit negatively.

In Case II, where food costs are relatively higher, both the break-even order size and the opti-
mal threshold for the restaurant increase. Initially, an increase in γ may lead to a profit reduction
due to a logic similar to that in Case I. However, as γ further increases, more buyers whose de-
mand is near the threshold will choose to give up the discount due to waste aversion and buy just
enough, potentially increasing the restaurant’s profit. Overall, the impact of γ in this case can be
non-monotonic, yet the restaurant tends to favor either γ = 0 or a sufficiently high γ.

In Case III, customers exhibit a greater disparity in their Marginal Willingness to Pay (MWTP)
(i.e., the gap of βH − βL is larger), resulting in low-demand customers with high MWTP choosing
to purchase only the necessary amount without the discount. In other words, high-MWTP cus-
tomers are in Scenario σ1 and there are no “new buyers.” With an increase in γ, more “spending
upgraders” with high MWTP opt for this approach, ultimately benefiting the restaurant.

In Figure 11, we analyze the optimal waste aversion (γ∗) for the restaurant across various
combinations of (c, βH). The value of γ is restricted to [0, 10]. Note that, in instances where the
optimal pricing scheme is skimming pricing and no customers purchase excess food, γ becomes
irrelevant. For the remaining cases where γ matters, the restaurant tends to prefer either γ = 0 or
a sufficiently high γ. These observations align with our earlier discussions related to Proposition
8.
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Figure 11: The Optimal Waste Aversion For The Restaurant

5.5 Value of Discount

In Figure 12, we present a graphical representation of the restaurant’s profit generated from indi-
vidual purchase orders based on the order size, comparing the optimal SLP scheme against the
optimal STD scheme. We explore two distinct combinations of (c, βH), with consistent outcomes
observed across both scenarios. The parameters, βL = 3, w = 1, s = 0.2, γ = 0.2, h = 0.3, and
θ̄ = 12, are held constant across all examples. The solid lines depict the profit associated with
feasible order sizes chosen by customers, while the dotted lines represent order sizes that are not
actual selections. Within each plot, the break-point in the STD scheme aligns with the volume
threshold set by the restaurant. Notably, the per-order profit under the STD scheme consistently
surpasses that under the SLP scheme for order sizes exceeding a specific threshold.

Regarding the buyer base, it is important to note that its size is not necessarily greater under
the optimized STD scheme compared to the optimized SLP scheme, as the corresponding prices
differ between the two. More specifically, the optimal SLP scheme attracts a larger number of type-
H customers, whereas the optimal STD scheme results in a greater number of type-L customers
making purchases.

5.6 Robustness Analysis

In this section, we conduct two sets of robustness checks. First, we examine the robustness of the
main result in Proposition 3, which states that when θ̄ is sufficiently large, the optimal pricing
scheme is BTP. We aim to test whether this result continues to hold even when θ̄ is relatively small
and the marginal cost of food, c, is low. Second, since our analysis thus far assumes that customer
demand follows a uniform distribution, we test whether our main results still hold under other
alternative demand distributions, such as the triangular distribution and the beta distribution.
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Figure 12: Order Size and Restaurant Profit

5.6.1 Small θ̄

Using the same parameter settings as in Figure 6 and assuming customer demand follows a uni-
form distribution, we investigate various combinations of

(
c, θ̄
)

with θ̄ < θ̃1. For each combina-
tion, we compute the optimal TSD scheme and determine whether it corresponds to SLP, or BTP
or neither. Our results (in the supplement) show that even when θ̄ is sufficiently small and the
marginal cost of food c is low, BTP remains the optimal pricing scheme. This finding confirms the
robustness of Proposition 2 under more restrictive conditions.

5.6.2 Alternative Distributions of Customer Demand

We next assess the robustness of our results when customer demand θ follows alternative distri-
butions. We consider two sets of alternative distributions. The first set consists of three triangular
distributions with three different modes at θ̄/4, θ̄/2 and 3θ̄/4 representing negatively skewed,
symmetric, and positively skewed demand, respectively. The second set consists of three beta
distributions with parameters (2, 4) , (2, 2), and (4, 2). They correspond to three different modes
at θ̄/4, θ̄/2 and 3θ̄/4, respectively, mirroring the skewness profiles of the triangular cases. All the
six alternative distributions are illustrated in Figure 13.

For all six alternative distributions, our numerical results (in the supplement) confirm the ro-
bustness of the main result in Proposition 2. Additionally, we test the robustness of our key reg-
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Figure 13: Alternative Distributions for Customer Demand

ulatory insights. Specifically, we find that reducing either the commission rate or the service fee
consistently leads to lower food waste and higher social welfare, under these alternative demand
distributions. Finally, across all alternative distributional settings, we observe patterns consistent
with those illustrated in Figure 10, further reinforcing the robustness of our main findings about
the impact of waste-aversion originally derived under the uniform distribution assumption.

6 Concluding Remarks

In this paper, we set out to understand how the common practice of offering “spend-X-get-a-
discount” deals on food delivery platforms affects both restaurant profits and the amount of food
waste. We look closely at two typical groups of customers—college students with tight budgets
and young professionals with a bit more to spend—and we ask: does this kind of deal actually
help restaurants make more money, or does it simply encourage people to buy extra food they
don’t really need? Our findings are surprising.

First, there are three distinct ways these threshold discounts can affect restaurant profits: order
size boosting, buyer base expansion, and profit margin enhancement.

• The effect of order size boosting turns out to be negative if customers are purely rational:
they will only add little extras if doing so truly saves them money; if not, they will either re-
frain from buying or purchase only what they need. Hence, restaurants lose from promoting
additional items.

• The real profit comes from the other two effects.

– First, by offering a discount for orders above a certain value, restaurants can encourage
customers who might not otherwise order to make a purchase.
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– Second, they can set higher effective prices on larger orders by offering the lump-sum
discount to most customers: the larger the order size, the less the buyer is subsidized for
each unit of food on average.

Second, we show that restaurants can actually reduce the waste caused by “topping up” orders
and still keep their earnings strong. By carefully choosing the spend-to-save threshold and the
base item price, a restaurant can limit unnecessary add-ons. Even better, when customers become
more sensitive to disposing of edible food—such as the restaurant gently reminds them of the
waste impact—profits can rise under the right conditions. In other words, a little nudge toward
mindful ordering not only reduces waste but can also boost the bottom line. This is because
increased waste aversion does not hinder buyer base expansion or profit margin enhancement.

Third, this balance of interests does not rest entirely on restaurants and customers. We demon-
strate that simple regulations, such as capping the fees third-party platforms can charge, guide
restaurants to set more reasonable discount thresholds. Those lower thresholds mean fewer need-
less extras, happier customers, and a healthier society—all without shaving off restaurant earn-
ings. In the end, smarter pricing, gentle customer guidance, and light-touch regulation can turn
what might seem an uncomfortable trade-off—between selling more food and wasting less—into
a genuine win for everyone.

Of course, our analysis has its limits. We have focused solely on “cloud kitchens” that sell only
through delivery apps, without looking at restaurants that also serve dine-in customers. We’ve
modeled pricing with just one discount threshold, even though many online restaurants employ
multi-tiered promotions or loyalty schemes the implications of which remain unexplored in this
study. And we treated customers as fully rational decision-makers, despite in reality people may
act on impulse, misinterpret savings, or respond to marketing in unpredictable ways. In future
work, it would be valuable to see how these findings change when restaurants juggle both dine-
in and online orders, when deals come in several tiers, or when customer choices are shaped by
limited information or behavioral quirks. Exploring competition between multiple restaurants on
the same platform would also bring us closer to the real world and help guide even more effective,
waste-aware pricing strategies.
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